多翼推荐 优质外链 腾讯云CDN拥有顶尖加速能力,丰富的功能全面覆盖各业务场景的加速需求,最为用户考虑的加速产品

谷歌机器学习忍者计划,谷歌让产品都具备人工智能

  众所周知,谷歌科技在人工智能这一领域上面一直走在最前沿,而最近谷歌又有了一个新动作,那就是要将人工智能融入到所有的产品中,而这个举动也被称为机器学习忍者计划。

  卡森·霍尔盖特(Carson Holgate)正在受训成为忍者。当然,这里所指的并非日本的武术,尽管霍尔盖特拥有不错的武术功底,现年26岁的她是空手道黑带二段。但是霍尔盖特最新接受的是算法培训,她几周前加入这个项目,希望能够借此掌握比身体对抗更强大的技术,即机器学习。

  作为谷歌安卓部门的工程师,霍尔盖特是参加今年“机器学习忍者”项目的18名程序员之一。在“机器学习忍者”项目中,谷歌通过类似“安德的游戏”方式,从各个团队选拨有才华的程序员,向他们传授人工智能技术,以便提升所有产品的智能化程度,尽管这有可能让他们开发的软件变得更加难以理解。

  负责管理“机器学习忍者”项目的谷歌内部机器学习产品经理克里斯汀·罗伯森(Christine Robson)说:“机器学习忍者计划的口号是:你想成为机器学习忍者吗?我们从谷歌各个部门选拨人员,并将他们融入机器学习团队进行6个月的培训。在导师指导下,这些人可以参与部分相关项目。他们可以由此入手,从而掌握大量机器学习方面的知识。”

  对于4年前拿着计算机科学和数学学位来到谷歌的霍尔盖特来说,这是掌握软件行业最热门技术的机会:利用学习算法和海量数据,教授软件完成任务的方法。多年来,机器学习都被视为高度专业的领域,仅有少数精英人士才能够掌握它。但这种情况已经发生改变,最近的研究结果表明:由模拟生物大脑工作方式的“神经网络”驱动的机器学习技术是将计算机与人类能力真正融合的正确途径。在某些情况下,甚至可能打造出多翼。

  谷歌希望扩大内部精英人才的数量,甚至希望让机器学习成为谷歌人人能够掌握的常规技术。对霍尔盖特这样的工程师而言,“机器学习忍者”项目是实现自我飞跃的绝佳机会,可以向精英中的精英学习。霍尔盖特言语间流露出敬畏之情,她说:“这些人正在开发令人觉得不可思议的模型,而且他们都有博士学位。”可是由于该项目将所有学员都称作“忍者”,所以她开始有些难以接受,但她最终克服了障碍。

  鉴于谷歌庞大的员工数量,其总部中的6万名员工约有半数是工程师,所以“机器学习忍者”项目实际上规模很小。但是这个项目却象征着谷歌的认知在发生改变。尽管机器学习很早以前就是谷歌研发的重点技术,谷歌也始终在积极招募这个领域的专家,但直到2016年,谷歌才真正开始痴迷于机器学习。

  雄心勃勃 打造多翼

  在2015年末的财报会议上,谷歌首席执行官桑达尔·皮查伊(Sundar Pichai)阐述了该公司的机器学习战略。他说:“机器学习是颠覆性的核心技术,可以让我们反思做任何事情的方式。我们希望将它应用于所有的产品中,包括搜索、广告、YouTube或Play。我们目前还处于发展初期,但你会看到我们以系统化的方式将机器学习应用到这些领域中。”

  显然,如果谷歌要在旗下的所有产品中应用机器学习技术,就需要精通这项技术的大量工程师,而机器学习技术与传统编码截然不同。正如机器学习畅销书《算法大师》(The Master Algorithm)的作者佩德罗·多明戈斯(Pedro Domingos)所说:“机器学习是阳光下的新生事物,它是可自主发展的技术。” 编写这样的系统需要找到合适的数据、选择合适的算法,并为确保成功营造合适的条件。最后,你要给予系统足够的信任,尽管这对程序员来说很难。

  谷歌机器算法项目负责人杰夫·迪恩(Jeff Dean)说:“越多的人通过这种方式思考解决问题的方案,我们就会变得越好。”迪恩估计,谷歌目前约有2.5万名工程师,但只有几千人精通机器学习技术,或许这个比例仅有10%。他希望最终精通机器学习技术的人能接近100%。在被问及这个愿望能否实现时,迪恩称“我们会尽力尝试。”

  多年以来,约翰·迦南德里(John Gianandrea)始终都是谷歌机器学习的重要推动者,而作为该公司的风向标,迦南德里最近成为了搜索业务主管。他2010年加盟谷歌时,对机器学习和神经网络并不太了解。但2011年左右,他被神经信息处理系统(NIPS)大会的消息所震惊。在每年的NIPS大会上,都有团队宣布利用机器学习技术取得的最新成果,其所涉及的领域包括翻译、语音识别和视觉系统等。迦南德里说:“许多令人感到惊讶的事情正在发生。当我首次关注NIPS大会时,感觉内容十分晦涩难懂。但在过去3年间,这个领域在学术界和产业界都取得蓬勃发展,去年大约有6000人参加大会。”

  这些神经网络算法在不断改进,再加上摩尔定律带来的强大计算能力,以及谷歌和Facebook等科技公司挖掘出来的庞大用户行为数据,机器学习的新时代由此拉开序幕。迦南德里也加入其中,他认为这项技术将成为谷歌的核心。与他志同道合的人还包括迪恩,他是谷歌秘密研究部门Google X神经网络项目“谷歌大脑”(Google Brain)的联合创始人。

  谷歌发力机器学习并非简单地代表编程技术发生了转变,这项技术可能为计算机赋予迄今高不可攀的权力。实际上,这已经属于“深度学习”算法,它是从大脑结构中获取灵感围绕复杂神经网络建立起来的算法。“谷歌大脑”就属于“深度学习”努力,谷歌旗下人工智能公司DeepMind也在加入这个领域。DeepMind研发的AlphaGo击败了人类围棋冠军,打破了人类对智能机器性能的期望,同时也引发了人们对智能机器和杀人机器人的担忧。

  尽管迦南德里不相信“机器会杀死我们”这样的预言,但他认为机器学习系统将成为革命性技术,从医疗诊断到无人驾驶汽车,各行各业都将利用这种技术。虽然机器学习不会取代人类,但它却会改变人类。迦南德里以Google Photos为例进行了解释。这款产品的标志性功能是能够在图片中识别出用户指定的物品,这令人感觉颇为神秘,甚至有些不安。通过学习,电脑可“知道”边境牧羊犬的样子,而且可以识别出不同年龄和毛长的边境牧羊犬。

  对于人类来说,这可能十分容易,但没人能够从数百万张图片中筛选出来这些照片,同时还能识别出不同的犬种,而机器学习系统就可以做到。如果它了解了一个犬种,便可使用相同的技术识别出另外9999个犬种。迦南德里说:“这才是真正令人感到新奇的地方。在这样狭小的领域,你甚至可以看到机器学习系统具备多翼能力。”

  自我发掘 逐渐进化

  需要强调的是,谷歌早已了解机器学习的概念,该公司的创始人就是强大人工智能的坚定信奉者。机器学习已经被应用到谷歌很多产品中,尽管并非总是采用最近热门的神经网络技术。事实上,谷歌10年前就开始通过内部培训,向公司工程师传授机器学习技术。2005年初,当时负责谷歌搜索业务的彼得·诺维格(Peter Norvig)向研究科学家大卫·帕布洛·科恩(David Pablo Cohn)提议,希望知道谷歌能否采用卡内基-梅隆大学组织的相关课程。

  而科恩表示,只有谷歌自己才能教授这种内部课程,因为谷歌的运营规模与其他公司都大不相同。所以他改造了谷歌总部43号楼一个大房间,每周三在那里开设两小时的课程。就连迪恩也参加过几次。科恩说:“那是全世界最好的课程。作为工程师,他们都比我优秀得多!”这门课程非常受欢迎,几乎座无虚席。就连班加罗尔办事处的员工都会特意等到午夜之后,以便接入远程教学系统。

  几年后,部分谷歌员工把授课内容制作成了短片,从而结束了直播授课的历史。但科恩认为,这门课程算得上是MOOC(大规模开放在线课程)的先驱。在随后几年,谷歌还针对机器学习培训展开了其他尝试,但这些尝试缺乏条理性和连续性。科恩2013年离开谷歌后,机器学习突然间成为谷歌关注的重点领域。

  但在2012年以前,机器学习课程的重要性还未获得充分认识,直到迦南德里决定“吸收大量从事这项工作的人”,并将他们安排到同样的办公楼之后。始于Google X部门的“谷歌大脑”也加入进来。迦南德里说:“我们吸收了很多团队,将他们安排到同一栋办公楼内,还提供了全新的咖啡机。有些人之前只接触过所谓的感知计算,即声音和语音识别等技术,而现在他们可以与那些从事语言研究的人共同探讨。”

  越来越多地,这些工程师们开发的机器学习技术开始出现在谷歌的热门产品中。由于视觉、语音识别以及翻译是机器学习的主要领域,因此无需感到惊讶,这项技术成为谷歌语音搜索、翻译和Photos等服务的重要组成部分。更重要的是,机器学习技术将被应用到所有产品中。

  迪恩表示,随着他和他的团队对机器学习的理解逐步深入,他们开始以更具野心的方式探索这项技术。他说:“我们之前或许会在系统的组件中使用机器学习技术,现在则会使用这项技术替代整套系统,而非为每个组件设计更好的机器学习模式。”迪恩表示,如果现在让他重新编写谷歌的基础架构,其中的很多内容都不再是预先编好的代码,而是后期学习而来的。

  机器学习还能够将原本无法想象的功能植入到产品中,比如2015年11月推出的Gmail自动回复功能。这个功能源自“谷歌大脑”项目联合创始人格雷格·考拉多(Greg Corrado)与Gmail工程师巴林特·米克洛斯(Bálint Miklós)之间的对话。考拉多之前曾经与Gmail团队合作使用机器学习算法探测垃圾信息、归类邮件,但米克洛斯提出了更激进的建议:能否利用机器学习技术自动生成回复邮件,省去移动用户在狭小的键盘上输入文字的麻烦。考拉多说:“当初我几乎惊呆了,因为这个建议太疯狂了。但我后来觉得,借助我们始终都在研究的预测性神经网络技术,或许可能实现。而在意识到这是一个机会的时候,我们就必须去尝试。”

  为了提高成功概率,谷歌让考拉多及其团队与Gmail部门展开了密切合作,这种派遣机器学习专家进驻产品部门的做法如今已经越来越普遍。考拉多说:“机器学习既是科学又是艺术,这就像烹饪。虽然烹饪过程发生了化学反应,但对于真正对烹饪感兴趣的人来说,必须要学习如何搭配手中的食材。”

  传统的人工智能技术在理解语言时,需要将语音规则嵌入系统。但在这个项目中,系统可以利用现代化的机器学习技术,借助足够的数据自主学习,就像儿童自学那样。考拉多说:“我并不是跟着语言学家学会说话的,而是通过听别人说话学来的。”。但真正令智能回复变得切实可行的,是它的成功很容易定义——他们的目的不是创造一个妖艳的虚拟斯嘉丽·约翰逊(Scarlett Johansson,电影《她》中的智能操作系统),而是希望它能回复真正的电子邮件。

  考拉多说:“这项服务的成功标志是,用户觉得机器生成的备选回复有用,可被当作自己的真正回复使用。”因此,只需要知道用户是否点击了系统推荐的回复内容,便可对其进行训练。然而,在开始测试智能回复功能时,用户却注意到了怪异事情:系统经常会推荐一些不合时宜的浪漫回应。考拉多说:“其中一种失败模式是:只要系统感觉困惑,它就会说‘我爱你’。这并不是软件漏洞,而是我们的错误引导它如此做。” 这个程序已经了解人类行为的某些微妙之处:“比如你感到担忧是说一句‘我爱你’,其实是一种很好的防御策略。”考拉多帮助该团队压制了系统的热情。

  去年11月发布的智能回复功能取得了巨大成功,Gmail Inbox应用的用户现在可以直接从系统提供的三条备选内容中选择一条,轻轻碰触即可进行回复。由于系统提供的回复内容非常切题,用户经常感到不可思议。在通过该应用发送的回复信息中,有1/10都是由机器学习系统生成的。考拉多笑着说:“这个项目能够成功还是令我感到有些惊讶。”

  • 上一页
  • 1
  • 2
  • 下一页
  • 共2页
上一篇:富士康印度建厂进展缓慢 iPhone印度制造仍然困难  
下一篇:印度修改相关法规允许苹果开设零售店

延伸阅读:

腾讯云CDN拥有顶尖加速能力,丰富的功能全面覆盖各业务场景的加速需求,最为用户考虑的加速产品

上一篇:快手视频如何加文字,快手视频加文字方法

下一篇:有钱任性 亚洲用户应用内付费率居全球之首

发表留言

*

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

腾讯云服务器安全可靠高性能,多种配置供您选择
扫一扫,加我为微信好友 加我为微信好友
您可以使用eMule或eMule Mod(Windows)、aMule(Win、Linux、Mac)等软件下载eD2k链接。。
eMule收藏集(.emulecollection)文件是您选中的所有链接的列表文件。eMule可以直接下载它们。
按住SHIFT键选择可以选中多个选择框。
可用文件名和大小选择器来选择文件。
文件名选择器帮您根据文件名称或后缀来选择文件。不分大小写。
符号使用:
和:空格( )、+
不包含:-
或:|
转义:一对英文引号("");
匹配开头:^
匹配结尾:$
例如:
选中所有名称中包含有“eMule”或“0.49c”字眼,但不包含有“exe”字眼的:emule|0.49c -exe
选中所有名称的开头是“eMule”,结尾是“0.49c”的:^emule 0.49c$
选中所有名称中带有“eMule 0.49c”的(必须是“eMule 0.49c”,中间没有别的字符,不能是“eMule fake 0.49c”),需要转义:"emule 0.49c"
大小选择器帮您根据文件大小选择文件。